Abstract

We propose a deep learning method to model and generate synthetic aortic shapes based on representing shapes as the zero-level set of a neural signed distance field, conditioned by a family of trainable embedding vectors with encode the geometric features of each shape. The network is trained on a dataset of aortic root meshes reconstructed from CT images by making the neural field vanish on sampled surface points and enforcing its spatial gradient to have unit norm. Empirical results show that our model can represent aortic shapes with high fidelity. Moreover, by sampling from the learned embedding vectors, we can generate novel shapes that resemble real patient anatomies, which can be used for in-silico trials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.