Abstract

Studies reported here are aimed to investigate the important structural features that characterize the human EP(3) antagonists. Based on the knowledge of low-energy conformation of the endogenous ligand, the initial hit analogs were prepared. Subsequently, a ligand-based lead optimization approach using pharmacophore model generation was utilized. A 5-point pharmacophore using a training set of 19 compounds spanning the IC(50) data over 4-log order was constructed using the HypoGen module of Catalyst. Following pharmacophore customization, using a linear structure-activity regression equation, a six feature three-dimensional predictive pharmacophore model, P6, was built, which resulted in improved predictive power. The P6 model was validated using a test set of 11 compounds providing a correlation coefficient (R(2)) of 0.90 for predictive versus experimental EP(3) IC(50) values. This pharmacophore model has been expanded to include diverse chemotypes, and the predictive ability of the customized pharmacophore has been tested.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.