Abstract

Time-domain numerical solutions of a nonlinear active cochlear model forced by click stimuli are analyzed with a time-frequency wavelet technique to identify the components of the otoacoustic response associated with different generation mechanisms/places. Previous experimental studies have shown evidence for the presence of at least two components in the transient otoacoustic response: A long-latency response, growing compressively with increasing stimulus level, and a shorter-latency response, characterized by faster growth. The possible mechanisms for the generation of the two components are discussed using the results of the numerical simulations. The model is a one-dimensional (1-D) transmission line model with nonlinear and nonlocal active terms representing the anti-damping action of the "cochlear amplifier." The dependence on the stimulus level of latency and level was measured for the different components of the response. The generation mechanisms/places of the different components were identified by varying the stimulus level and by turning off the cochlear roughness in well-defined cochlear regions. The results suggest that reflections from roughness coming from basal regions of the cochlea may give a relevant contribution to the early otoacoustic response, whereas nonlinear mechanisms seem to produce a much smaller additional contribution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.