Abstract

In this paper an excitation of waves is considered during the time interval in which the undisturbed magnetic field changes its direction. If this interval is taken to be 2 years, which is shorter than the 11-year cycle, then the undisturbed components of the magnetic field may be linearly dependent on time and independent of the coordinates. The excitation of waves is due to the undisturbed stationaryV 0 flow with divV 0 = 0 and with (V 0 rot0) = constant. We use the local Cartesian coordinate system, which is immovable towards the solar centre, and consider the case when the toroidal component of the undisturbed magnetic field changes its sign simultaneously with one of the axial components. The third component does not change its direction. The efficiency of the enhancement of the magnetic field and velocity disturbances depends on the Alfven wave frequency,ω A. Whenω A = 0, the component of the disturbed velocity, which is directed along the constant component of the undisturbed magnetic field, increases. In this case the shear waves excite the carrier (high) frequency (KV 0), whereK is the wave vector. Due to the shear instability the amplitude of the velocity increases during 1 year before the moment of reversal of the global magnetic field polarity (RGMFP) for an arbitrary latitude. It reaches a maximum at RGMFP and decreases in the next year. Whenω A > 0, then the amplitudes of the disturbed values reach maxima before the moment of RGMFP, and whenω A < 0, they reach maxima after it. We argue that the shear waves propagate from middle latitudes to the pole and equator. Using the results of the analytical solutions and leaning on the evidence of the observational data (Gigolashvili and Japaridze, 1992), we derive the result that the component of the undisturbed magnetic field, which is perpendicular to the solar surface, changes its sign simultaneously with the toroidal component.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call