Abstract

Bessel beams are of great interest due to their unique non-diffractive properties. Using a conical prism or an objective paired with an annular aperture are two typical approaches for generating zeroth-order Bessel beams. However, the former approach has a limited numerical aperture (NA), and the latter suffers from low efficiency, as most of the incident light is blocked by the aperture. Furthermore, an additional phase-modulating element is needed to generate higher-order Bessel beams, which in turn adds complexity and bulkiness to the system. We overcome these problems using dielectric metasurfaces to realize meta-axicons with additional functionalities not achievable with conventional means. We demonstrate meta-axicons with high NA up to 0.9 capable of generating Bessel beams with full width at half maximum about as small as ~λ/3 (λ=405 nm). Importantly, these Bessel beams have transverse intensity profiles independent of wavelength across the visible spectrum. These meta-axicons can enable advanced research and applications related to Bessel beams, such as laser fabrication, imaging and optical manipulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.