Abstract

Liquid crystals have been widely used in optoelectronic devices because of their fast response and excellent electro-optic properties. Featuring a unique ability to manipulate light, they are also proposed as a good candidate in topological photonics for further applications. In this study, an axially symmetric sheared polymer network liquid crystal (ASPNLC) is fabricated to demonstrate vector vortex beams. Linearly and circularly polarized light is used to illuminate the sample, and the output vector vortex beams generated from the ASPNLC indicate that the polarization states of the output beams are dependent on the polarization of the incident light. The measured phenomena are modeled on the bases of phase retardation and Jones calculus to eventually calculate the polarization-resolved intensity profiles accordingly. Hence, our experimental study provides a holistic understanding of the method for generating vector vortex beams by an ASPNLC, which is expected to enhance the knowledge of optical mechanisms for liquid crystal applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call