Abstract
There has been increased interest in the use and manipulation of optical fields to address the challenging problems that have traditionally been approached with microwave electronics. Some examples that benefit from the low transmission loss, agile modulation and large bandwidths accessible with coherent optical systems include signal distribution, arbitrary waveform generation and novel imaging1. We extend these advantages to demonstrate a microwave generator based on a high-quality-factor (Q) optical resonator and a frequency comb functioning as an optical-to-microwave divider. This provides a 10 GHz electrical signal with fractional frequency instability of ≤8 × 10−16 at 1 s, a value comparable to that produced by the best microwave oscillators, but without the need for cryogenic temperatures. Such a low-noise source can benefit radar systems2 and improve the bandwidth and resolution of communications and digital sampling systems3, and can also be valuable for large baseline interferometry4, precision spectroscopy and the realization of atomic time5,6,7. Researchers demonstrate a microwave generator based on a high-Q optical resonator and a frequency comb functioning as an optical-to-microwave divider. They generate 10 GHz electrical signals with a fractional frequency instability of ≤8 × 10−16 at 1 s.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.