Abstract

We present a protocol for deterministically producing continuous-variable Einstein-Podolsky-Rosen- (EPR-) entangled optical beams in macroscopic atomic ensembles. In contrast to previous cavity-based schemes, our protocol requires only a single pass of two coherent light beams through two spin-polarized free-space atomic vapors, which greatly simplifies the experimental implementation and makes the scheme very efficient. The two entangled modes have a frequency difference of about twice the Zeeman frequency of the atomic vapors, which can be widely tuned via magnetic-field control. Under realistic experimental conditions, we show that large entanglement could be created even with room-temperature atomic vapors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.