Abstract

AbstractDirect or large eddy simulation of a turbulent flow field is strongly influenced by its initial or inflow boundary condition. This paper presents a new stochastic approach to generate an artificial turbulent velocity field for initial or inflow boundary condition based on digital filtering. Each velocity component of the artificial turbulent velocity field is generated by linear combination of individual uncorrelated random fields. These uncorrelated random fields are obtained by filtering random white‐noise fields. Using common elements in these linear combinations results in multi‐correlation among different velocity components. The generated velocity field reproduces locally desired Reynolds stress components and integral length scales including cross‐integral length scales. The method appears to be simple, flexible and more accurate in comparison with previously developed methods. The accuracy and performance of the method are demonstrated by numerical simulation of a homogeneous turbulent shear flow with high and low shear rates. To assess the accuracy and performance of the method, simulation results are compared with a reference simulation. Copyright © 2007 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.