Abstract

Generation of tunable millimeter-wave (MMW) and terahertz (THz) signals is experimentally demonstrated with an optically injected 1310-nm quantum dot distributed feedback (QD DFB) laser. A novel technique for MMW and THz signal generation is proposed, which is based on the dual-mode laser operation and the four-wave mixing induced in the QD DFB under single-beam optical injection into one of its residual Fabry-Perot modes. Coarse and fine tunability of the MMW and THz signals from 117 to 954 GHz is also demonstrated by injecting the external light into different residual modes of the QD laser and by controlling the injection strength and the initial frequency detuning.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call