Abstract

Bone marrow-derived dendritic cells (BmDC) are potent APC and can promote antitumor immunity in mice when pulsed with tumor Ag. This study aimed to define the culture conditions and maturation stages of BmDC that enable them to optimally function as APC in vivo. BmDC cultured under various conditions (granulocyte-macrophage CSF (GM-CSF) or GM-CSF plus IL-4 alone or in combination with Flt3 ligand, TNF-alpha, LPS, or CD40 ligand (CD40L)) were analyzed morphologically, phenotypically, and functionally and were tested for their ability to promote prophylactic and/or therapeutic antitumor immunity. Each of the culture conditions generated typical BmDC. Whereas cells cultured in GM-CSF alone were functionally immature, cells incubated with CD40L or LPS were mature BmDC, as evident by morphology, capacity to internalize Ag, migration into regional lymph nodes, IL-12 secretion, and alloantigen or peptide Ag presentation in vitro. The remaining cultures exhibited intermediate dendritic cell maturation. The in vivo Ag-presenting capacity of BmDC was compared with respect to induction of both protective tumor immunity and immunotherapy of established tumors, using the poorly immunogenic squamous cell carcinoma, KLN205. In correspondence to their maturation stage, BmDC cultured in the presence of CD40L exhibited the most potent immunostimulatory effects. In general, although not entirely, the capacity of BmDC to induce an antitumor immune response in vivo correlated to their degree of maturation. The present data support the clinical use of mature, rather than immature, tumor Ag-pulsed dendritic cells as cancer vaccines and identifies CD40L as a potent stimulus to enhance their in vivo Ag-presenting capacity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.