Abstract

We report a time-reversal method based on the Richards-Wolf vectorial diffraction theory to generate a prescribed polarization topology on a defined trajectory within areas of relatively high intensity. An example is given to generate transversely oriented optical Möbius strips that wander around an axis perpendicular to the beam propagation direction. A number of sets of dipole antennae are purposefully positioned on a defined trajectory in the y = 0 plane and the radiation fields are collected by one high-NA objective lens. By sending the complex conjugate of the radiation fields in a time-reversed manner, the focal fields are calculated and the optical polarization topology on the trajectory can be tailored to form prescribed Möbius strips. The ability to control optical polarization topologies may find applications in nanofabrication, quantum communication, and light-matter interaction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call