Abstract

We combine tunable midinfrared (mid-IR) pump pulses with time- and angle-resolved two-photon photoemission to study ultrafast photoexcitation of the topological surface state (TSS) of Sb_{2}Te_{3}. It is revealed that mid-IR pulses permit a direct excitation from the occupied to the unoccupied part of the TSS across the Dirac point. The novel optical coupling induces asymmetric transient populations of the TSS at ±k_{∥}, which reflects a macroscopic photoexcited electric surface current. By observing the decay of the asymmetric population, we directly investigate the dynamics of the long-lived photocurrent in the time domain. Our discovery promises important advantages of photoexcitation by mid-IR pulses for spintronic applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call