Abstract

In many neuronal systems, information is encoded in temporal spike patterns. The recognition and storage of temporal patterns requires the generation and modulation of time delays between inputs and outputs. In cerebellar Purkinje cells, stimulation of metabotropic glutamate receptors (mGluRs) results in a delayed calcium and voltage response that has been implicated in classical conditioning and temporal pattern recognition. Here, we analyse and simplify a complex model of the intracellular signalling network that has been proposed as a substrate for this delayed response. We systematically simplify the original model, present a minimal model of time delay generation, and show that a delayed response can be produced by the combination of negative feedback and autocatalysis, without any intervening signalling steps that would contribute additive delays. The minimal model is analysed using phase plane methods, and classified as an excitable system. We discuss the implication of excitability for computations performed by intracellular signalling networks in general.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.