Abstract

We present a generation proposal of three-photon polarization-entangled decoherence-free states, which are immune to the collective decoherence. Based on weak cross-Kerr nonlinearities, the polarization and spacial entanglement gates are realized, and thus three-photon polarization-entangled decoherence-free states can be produced. According to the outcomes of Homodyne measurement performed in the spacial entanglement gate, one Swap gate is inserted into two paths of the photon 1 to swap its spacial modes, by means of classical feed forward. In addition, in the process for realizing two entanglement gates, unitary transformation operations are performed on the appropriate photons conditioned on the different phase shifts occurred on the coherent states, aiming to obtain the same state under two scenarios of the different path compositions of photons. At the output ports of the circuit, three-photon polarization-entangled decoherence-free states which can be utilized to represent two logical qubits, |0〉L and |1〉L are achieved. Apart from Kerr media, only simple linear optical elements and the classical feed forward techniques are necessary in this proposal, facilitating its practical implementation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.