Abstract

Polyene antibiotics, including amphotericin, nystatin, pimaricin, and tetramycin, are important antifungal agents. Increasing the production of polyenes and generation of their improved analogues based on the biosynthetic pathway engineering has aroused wide concern in application researches. Herein, tetramycin and nystatin, both of which share most of acyl-CoA precursors, are produced by Streptomyces hygrospinosus var. beijingensis CGMCC 4.1123. Thus, the intracellular malonyl-CoA is found to be insufficient for PKSs (polyketide synthases) extension of tetramycin by quantitative analysis in this wild-type strain. To circumvent this problem and increase tetramycin titer, the acyl-CoA competing biosynthetic gene cluster (BGC) of nystatin was disrupted, and the biosynthetic genes of malonyl-CoA from S. coelicolor M145 were integrated and overexpressed in nys-disruption mutant strain (SY02). Moreover, in order to specifically accumulate tetramycin B from A, two copies of tetrK and a copy of tetrF were introduced, resulting in elevating tetramycin B fermentrationtiter by 122% to 865 ± 8mg/L than the wild type. In this optimized strain, a new tetramycin derivative, 12-decarboxy-12-methyl tetramycin B, was generated with a titer of 371 ± 26mg/L through inactivation of a P450 monooxygenase gene tetrG. Compared with tetramycin B, the new compound exhibited higher antifungal activity against Saccharomyces cerevisiae and Rhodotorula glutinis, but lower hemolytic toxicity to erythrocyte. This research provided a good example of employing biosynthetic engineering strategies for fermentation titer improvement of polyene and development of the derivatives for medicinal applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call