Abstract

We conducted a two-dimensional numerical model to analyze the generation of tectonic over-pressure, which is a positive deviation from lithostatic pressure, for deep slabs which are anchored at the 660 km phase boundary. The formation of the ductile shear zone under a compressional tectonic setting induces tectonic over-pressure. We first propose that an apparent shear zone originated from an elastic heterogeneity in the phase loop, which is the two-phase (i.e., olivine and wadsleyite) coexistence interval around the 410 km boundary within subducting oceanic lithospheres, can cause tectonic over-pressure with a range from 0.3 to 1.5 GPa. This over-pressure significantly impacts the formation of the olivine–wadsleyite phase transition. The flattening of the olivine–wadsleyite interface by over-pressure is well-resolved. Therefore, we argue that the over-pressure should be applied when analyzing the phase boundary within the subducting lithosphere. Our results provide a new insight on the interplay among the phase transition, shear zone formation and tectonic over-pressure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.