Abstract

OCT is a non-invasive imaging technique commonly used to obtain 3D volumes of the ocular structure. These volumes allow the monitoring of ocular and systemic diseases through the observation of subtle changes in the different structures present in the eye. In order to observe these changes it is essential that the OCT volumes have a high resolution in all axes, but unfortunately there is an inverse relationship between the quality of the OCT images and the number of slices of the cube. This results in routine clinical examinations using cubes that generally contain high-resolution images with few slices. This lack of slices complicates the monitoring of changes in the retina hindering the diagnostic process and reducing the effectiveness of 3D visualizations. Therefore, increasing the cross-sectional resolution of OCT cubes would improve the visualization of these changes aiding the clinician in the diagnostic process. In this work we present a novel fully automatic methodology to perform the synthesis of intermediate slices of OCT image volumes in an unsupervised manner. To perform this synthesis, we propose a fully convolutional neural network architecture that uses information from two adjacent slices to generate the intermediate synthetic slice. We also propose a training methodology, where we use three adjacent slices to train the network by contrastive learning and image reconstruction. We test our methodology with three different types of OCT volumes commonly used in the clinical setting and validate the quality of the synthetic slices created with several medical experts and using an expert system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.