Abstract

Coarse-grained molecular dynamics simulations are applied to investigate the origins of the surface features observed in films deposited by the Matrix-Assisted Pulsed Laser Evaporation (MAPLE) technique. The formation of transient balloon-like structures with a polymer-rich surface layer enclosing matrix vapor, observed in earlier simulations of slow heating of polymer-matrix droplets, has been explored in this work at higher rates of thermal energy deposition. Tensile stresses generated in the regime of partial stress confinement are found to induce an internal boiling in the overheated droplets and associated generation of “molecular balloons” at thermal energy densities at which no homogeneous boiling takes place without the assistance of tensile stresses. Simulations of the dynamic processes occurring upon the collision of a polymer-matrix droplet with a substrate provide the molecular-level pictures of the droplet impact phenomenon and reveal the connections between the droplet landing velocity and the shapes of the polymer features observed in scanning electron microscopy images of films deposited in MAPLE experiments. The distinct types of surface features observed in MAPLE experiments, namely, wrinkled “deflated balloons,” localized arrangements of interconnected polymer filaments, and elongated “nanofibers,” are shown to emerge from different scenarios of droplet landing and/or disintegration observed in the simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call