Abstract
5-(4-Nitrophenyl)penta-2,4-dienal (NPPD) stimulated NADPH-supported oxygen consumption by rat liver microsomes in a concentration-dependent manner. The NPPD stimulation of O 2 uptake was not inhibited by metyrapone and was decreased in the presence of NADP + and p-hydroxymercuribenzoate. These observations suggest that the NPPD initial reduction step is mediated by NADPH-cytochrome P-450 reductase and not by cytochrome P-450. Spin-trapping studies using 5,5-dimethyl-1-pyrroline N-oxide (DMPO) revealed the formation of superoxide anion upon incubation of NPPD, NADPH, DMPO and rat liver microsomes. Hydrogen peroxide generation was also detected in these incubations, thus confirming redox cycling of NPPD under aerobic conditions. NPPD stimulated oxygen consumption, superoxide anion formation and hydrogen peroxide generation by rat kidney, testes and brain microsomes. Other enzymes capable of nitroreduction (NADH dehydrogenase, xanthine oxidase, glutathione reductase, and NADP + ferredoxin oxidoreductase) were also found to stimulate redox cycling of NPPD. The ability of NPPD to induce superoxide anion and hydrogen peroxide formation might play a role in its reported mutagenicity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.