Abstract

Pathways of succinyl-Coenzyme A (succinyl-CoA) formation in various photosynthetic bacteria were investigated through several approaches, including determination of activity levels of relevant enzymes. Extracts of photosynthetically grown cells of representative Rhodospirillaceae and Chromatium vinosum showed α-ketoglutarate dehydrogenase (KGD) activities sufficient to account for generation of the succinyl-CoA required for biosynthetic metabolism. Except as noted below, the observed ratios of fumarate reductase/succinate dehydrogenase activities were low, consistent with the conclusion that these organisms produce succinyl-CoA oxidatively from α-ketoglutarate (KG), rather than by reductive metabolism of fumarate. On the other hand, the green bacterium Chlorobium limicola appears to produce succinyl-CoA by the reductive pathway; in this organism, KGD activity could not be detected, and a high fumarate reductase/succinate dehydrogenase ratio was observed. Results obtained with Rhodopseudomonas gelatinosa suggest that this otherwise typical member of the Rhodospirillaceae may be able to generate succinyl-CoA via both “arms” of the citric acid cycle, that is, oxidatively from KG, and reductively from fumarate. To further explore the several physiological roles of the conversion: KG→succinyl-CoA in Rhodopseudomonas capsulata, a mutant (strain KGD 11) almost completely blocked in KGD activity was isolated and studied in detail. Under anaerobic photosynthetic conditions, KGD 11 grows readily on succinate as the sole carbon source; in contrast to the wild type parent, however, it cannot grow with l-glutamate as the source of carbon. The R. capsulata parental strain can grow in darkness as an aerobic heterotroph on various carbon/energy sources including pyruvate, D,L-malate, or succinate. Mutant KGD 11, however, is unable to grow aerobically on the substrates noted. These results indicate that the energy for aerobic dark growth of R. capsulata is provided by ”respiratory phosphorylation” fueled by citric acid cycle function, and that this requires a substantial level of KGD activity. The present findings also indicate that citric acid cycle sequences in most of the Rhodospirillaceae prominently used in current research are geared to operate in the oxidative direction, as in nonphotosynthetic aerobic heterotrophs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.