Abstract

We report on a study of highly controllable, quasi-static hollow plasma channels generated by ion motion following a laser–plasma interaction via numerical simulations. These channels are generated by ion motion in a nonlinear wakefield, which has an asymmetry between focusing and defocusing periods. Such plasma channels, driven by a fs duration, 100 TW level laser pulse, have the capability to guide more powerful laser pulses. Moreover, we show that curved plasma channels can be generated in a transverse density gradient plasma and all-optical guiding of a second, significantly more powerful laser pulse in such a curved plasma channel. This mechanism may be useful for creating plasma optics for multi-stage TeV laser plasma accelerators and compact synchrotron radiation sources.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call