Abstract

A numerical study of a two‐dimensional turbulent flow in a partially open rectangular cavity such as a room is carried out. The turbulent flow is induced by the energy input due to a localized heat source positioned on the floor of the cavity. This flow is of interest in enclosure fires where the flow in the cavity interacts with the environment through the opening or vents. The focus is on the stable, thermal stratification that arises in the room and on the influence of the opening height. A finite‐difference method is employed for the solution of the problem, using a low Reynolds number k — ε turbulence model for the turbulent flow calculations. This model is particularly suitable for flows in which the possibility for relaminarization exists. It was found that, for high Grashof numbers and for relatively small opening heights, particularly for doorway openings, a strong stable thermal stratification is generated within the cavity, with a cooler, essentially uniform, layer underlying a warmer, linearly stratified, upper layer. As a consequence, turbulence is suppressed and the flow in the upper region of the cavity becomes laminar with turbulence confined to locations such as the fire plume above the source and the shear layer at the opening. The penetration distance and the height of the interface are both found to decrease with a reduction in the opening height. The Nusselt number for heat transfer from the source is seen to be affected to a small extent by the opening height. The basic trends are found to agree with those observed in typical compartment fires. Comparisons with results available in the literature on turbulent buoyancy‐driven enclosure flows indicate good agreement, lending support to this model and the numerical scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.