Abstract
We investigated the effects of stoichiometry on photovoltages and photocurrents in CuBi2O4 thin-film photocathodes grown by pulsed laser deposition under different oxygen partial pressures to manipulate their stoichiometry. While the X-ray diffraction patterns show crystalline phases in the CuBi2O4 thin films, it is found that the Cu/Bi ratio of the CuBi2O4 thin films varied from ~0.3 to ~0.5 which are analyzed by X-ray photoelectron spectroscopy and energy-dispersive X-ray spectroscopy. The slightly off-stoichiometric CuBi2O4 thin-film photocathode with a Cu/Bi ratio of ~0.44 shows the highest photocurrent density in the CuBi2O4 thin films. More interestingly, the off-stoichiometric CuBi2O4 thin-film photocathode with a Cu/Bi ratio of ~0.44 exhibited a stable open-circuit voltage difference of ~0.2 V RHE without severe degradation over time. On the other hand, the photovoltage of the stoichiometric CuBi2O4 thin-film photocathode with a Cu/Bi ratio of ~0.5 gradually decreased as a function of time. Our results suggest that stoichiometry manipulation can be one of the promising strategies to achieve long-term stable Cu-based oxide photocathodes with the maintenance of a stable photovoltage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.