Abstract
We demonstrate the generation of vortex solitons in a model of dissipative optical media with the singular anti-cubic (AC) nonlinearity, by launching a vorticity-carrying Gaussian input into the medium modeled by the cubic-quintic complex Ginzburg-Landau equation. The effect of the AC term on the beam propagation is investigated in detail. An analytical result is produced for the asymptotic form of fundamental and vortical solitons at the point of r→0, which is imposed by the AC term. Numerical simulations identify parameter domains that maintain stable dissipative solitons in the form of vortex clusters. The number of vortices in the clusters is equal to the vorticity embedded in the Gaussian input.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.