Abstract

Nowadays, the nonlinear optical process of spontaneous parametric down-conversion is considered as the canonical approach for creating entangled-photon pairs. We consider three pairs of entangled photons emitted by the parametric down-conversion source, and introduce a setup for evolving these photons based on linear optics, which is composed of several polarizing beam splitters, beam splitters, and half wave plates. By using the parametric down-conversion source and the setup, we carefully design an efficient scheme for preparing six-photon hyperentangled states in both the polarization and the spatial degrees of freedom. Because we use almost all possible behaviors of the three pairs of entangled photons, the present scheme is efficient for creating six-photon hyperentangled states. Next, in the regime of weak nonlinearity we design a quantum nondemolition detection to distinguish the two cases of photons in two special spatial modes. It is worth pointing out that our scheme is much easier to realize, since the strength of the nonlinearities in the process of quantum nondemolition detection can be restricted to the scalable orders of magnitude in practicality.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call