Abstract

The Sigma 1 receptor (SIGMAR1) is a transmembrane protein located in the mitochondria-associated endoplasmic reticulum membrane, and plays an important role in cell survival as a pluripotent modulator of a variety of signaling pathways related to neurodegeneration. Though SIGMAR1 is a potential target for neurodegenerative diseases, the specific role of SIGMAR1 in different tissue and cell types remains unclear. Here we reported the generation of Sigmar1 conditional knockout (Sigmar1loxP ) mice using CRISPR-Cas9 method to insert loxP sites into the 5'- and 3'-untranslated regions of Sigmar1. We showed that the insertion of loxP sequences did not affect the expression of Sigmar1 and that Sigmar1loxP/loxP mice exhibited no detectable visual defects compared with wild-type mice at the early adult stage. By crossing Sigmar1loxP mice with retina-specific Six3-Cre and ubiquitous CMV-Cre mice, we confirmed the deletion of Sigmar1 coding regions of exons 1-4, and the retina-specific and global loss of SIGMAR1 expression, respectively. Thus, Sigmar1loxP mice provide a valuable tool for unraveling the tissue and cell-type-specific role of Sigmar1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.