Abstract

Generation of self-similar parabolic pulse is analytically and numerically demonstrated by designing parabolic index normal dispersion decreasing fiber (NDDF) amplifiers. The pulse transmission is extensively studied for NDDFs in presence of physical gain as well as virtual gain induced by two different dispersion profiles corresponding to two different physical gain coefficients. Here, we introduce the virtual gain arising from the unavoidable spatial nonlinear variation, which helps to obtain the self-similar parabolic pulses at smaller optimum length in comparison to NDDF with constant nonlinearity. The output power profiles resemble with a perfect parabolic shape giving rise to self-similar pulses with very small misfit parameters. Pulse propagation in presence of spatial gain variation is also studied. To avoid fabrication difficulties, we propose equivalent staircase dispersion profiles consisting of a number of constant dispersion fibers (CDFs), which are simple to manufacture and show performances excellently close to that of the proposed NDDF.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.