Abstract
Mesh generation from X-ray computed tomography (CT) images of mechanical parts is an important consideration in industrial application, and boundary surface meshes in multimaterial parts can be extracted by generating segmented meshes from segmented images. In this paper, the authors outline a new approach for achieving segmented mesh generation. The image is first subjected to centroidal Voronoi tessellation and Delaunay tessellation steered by a density map to create a triangular mesh while maintaining discontinuities between materials. Given an input domain and a number of initial sites, the energy function is minimized automatically by iteratively updating the Voronoi tessellation and relocating sites to produce optimized domain discretization and form the mesh. Thus, the mesh in question is effectively and quickly segmented into different parts via this new graph cut method. The proposed approach is considered more efficient because there are fewer triangles than pixels, which reduces computation time and memory usage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Computing and Information Science in Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.