Abstract

Nonlinear interaction between the magnon mode and the mechanical mode in a magnomechanical system is treated analytically where the magnon mode is coherently driven by a bichromatic microwave drive field consisting of a strong pumping field and a weak probe field and that works within a perturbative regime. Using experimentally achievable parameters, we show that the magnonic second-order sideband is generated and can be considerably enhanced by increasing the power of the pumping field. The suppression of the magnonic second-order sideband generation at the resonance point is discussed. Furthermore, the efficiency of magnonic second-order sideband generation can be well controlled by adjusting the applied bias magnetic field strength, which is a particular feature compared to the optical second-order sideband. In addition to offering insights into the magnomechanical nonlinearity, the present results have the potential to pave the way for exploring practical applications for achieving high-precision measurement in magnonics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call