Abstract
Since it is difficult to obtain a large number of the real samples of SAR images, the accuracy of synthetic aperture radar automatic target recognition (SAR-ATR) based on deep learning is often affected by the lack of real samples. Generative adversarial network (GAN) is a method that can effectively generate samples to expand dataset. This paper proposes a GAN that adds a condition to guide image generation and modifies the true and false discriminator to a discriminator with classification (DwC). In addition to correctly recognize the real SAR images, DwC recognizes the generated images as the class N + 1. In order to make the generated images recognized as the real images by DwC, the conditional generator gradually learns to generate the images with features of a specific category. Applying the SAR images generated by our model to target recognition based on deep learning can effectively improve the accuracy.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.