Abstract

The reversible execution of C/C++ code has been a target of research and engineering for more than a decade as reversible computation has become a central notion in large-scale parallel discrete event simulation (PDES). The simulation models that are implemented for PDES are of increasing complexity and size and require various language features to support abstraction, encapsulation, and composition when building a simulation model. In this paper, we focus on parallel simulation models that are written with user-defined C++ abstractions and abstractions of the C++ Standard Library. We present an approach based on incremental state saving for establishing reversibility of C++ and an evaluation for a kinetic Monte-Carlo simulation implemented in C++. Although a significant runtime overhead is introduced with our technique, it is an enormous win that it allows using the entire C++ language, and has that code automatically transformed into reversible code to enable parallel execution with the Rensselaer’s optimistic simulation system (ROSS).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.