Abstract

Engineering effective vectors has been crucial to the efficient delivery and expression of therapeutic gene products in vivo. Among these, HSV-1 represents an excellent candidate vector for delivery to the peripheral and central nervous systems. The natural biology of HSV-1 includes the establishment of a lifelong latent state in neurons in which the viral genome persists as an episomal molecule. Genomic HSV vectors can be produced that are completely replication-defective, nontoxic, and capable of long-term transgene expression. Herpes simplex virus (HSV) vectors are constructed by using a replication-deficient vector backbone (TOZ.1) for homologous recombination with a shuttle plasmid containing a cassette expressing the gene of interest inserted into the UL41 gene sequence. The TOZ.1 vector expresses a reporter gene (lacZ) in the UL41 locus, such that recombination of the transgenic cassette into the UL41 locus results in the loss of the reporter gene activity. The TOZ.1 vector also contains a unique PacI endonuclease site for digestion of parental viral DNA that substantially reduces the nonrecombinant background. Following homologous recombination of the shuttle plasmid into the PacI-digested TOZ.1 genome, the recombinants are identified as clear plaques. After three rounds of limiting dilution analysis, the structure of the recombinants can be confirmed by Southern blot or by polymerase chain reaction (PCR) analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call