Abstract

Purified renal globotriaosyl ceramide (Gb3)/cholesterol mixtures sonicated heated in a Triton-containing buffer placed below a discontinuous sucrose gradient form glycosphingolipid (GSL)-containing dense lipid structures at the 30/5% sucrose interface after centrifugation. Inclusion of fluorescein-labeled verotoxin 1 B subunit (FITC-VT1 B) within the most dense sucrose layer results in the fluorescent labeling of this Gb3-containing raft structure. Alternatively inclusion of I-labeled VT1 fractionation allows quantitation of binding. FITC-VT1 B effectively competes for I-VT1/Gb3 raft binding. This assay will allow the definition of the optimal raft composition for VT1 (or any other ligand) binding. The effect of several potential cellular raft components are reported. Increased cholesterol content increased VT1 binding. Addition of phosphatidylethanolamine had minimal effect while phosphatidylserine was inhibitory. Although inclusion of sphingomyelin increased the Gb3 content of the "raft" reduced VT1 binding was seen. Inclusion of other glycolipids can also be inhibitory. The addition of globotetraosyl ceramide had no effect; however addition of sulfogalactosyl ceramide but not sulfogalactoglycerolipid inhibited VT1/Gb3 raft binding. These results suggest that certain GSLs can disfavor the formation of the appropriate 'raft' structure for ligand binding that this is dependent on both their carbohydrate lipid structure. Such "deceptor" GSLs may provide an as yet unappreciated mechanism for the regulation of cellular GSL receptor activity. This model is an effective tool to approach the dynamics ligand-binding specificity of GSL/cholesterol-containing lipid microdomains.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call