Abstract

Objectives: Chlamydiae are obligate intracellular pathogens that cause many diseases for which the pathogenic mechanisms are largely unknown. Because reactive oxygen species (ROS) have been implicated in pathogenesis of many viral and bacterial infections, the authors assessed the release of ROS in selected host cells (monocytes, Sup-T1 cells, and Hep-2 cells) infected with Chlamydia trachomatis. Methods: Infected cell cultures demonstrated a dramatic depletion of uric acid from culture media that was not seen in uninfected cultures. Reactive oxygen species generated in infected cultures were associated with the formation of lipid peroxides in host cell membrane. Results: There was a significant increase in lipid peroxide levels in infected cells compared to uninfected controls. Ascorbic acid treatment of infected cell cultures reduced the formation of membrane lipid peroxides. Conclusions: These results suggest that ROS produced during chlamydial replication cause membrane lipid peroxidation. The role of ROS-induced membrane damage in chlamydial pathogenesis is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.