Abstract

We recently characterized DahlS.Z-Leprfa/Leprfa (DS/obese) rats, derived from a cross between Dahl salt-sensitive rats and Zucker rats, as a new animal model of metabolic syndrome (MetS). Although the phenotype of DS/obese rats is similar to that of humans with MetS, the pathophysiological and metabolic characteristics in each cell type remain to be clarified. Hence, the establishment of induced pluripotent stem cells (iPSCs) derived from MetS rats is essential for investigations of MetS in vitro. Reports of rat iPSCs (riPSCs), however, are few because of the difficulty of comparing to other rodents such as mouse. Recently, the advantage of using mesenchymal stromal cells (MSCs) as a cell source for generating iPSCs was described. We aimed to establish riPSCs from MSCs in adipose tissues of both DS/obese rats and their lean littermates, DahlS.Z-Lepr+/Lepr+ (DS/lean) rats using lentivirus vectors with only three factors Oct4, Klf4, and Sox2 without c-Myc. The morphology, gene expression profiles, and protein expression of established colonies showed embryonic stem cell (ESCs)-like properties, and the differentiation potential into cells from all three germ layers both in vitro and in vivo (teratomas). Both riPSCs became adipocytes after induction of adipogenesis by insulin, T3, and dexamethasone. Real-time PCR analysis also revealed that both riPSCs and the adipose tissue from DS/obese and DS/lean rats possess similar expression patterns of adipocyte differentiation-related genes. We succeeded in generating riPSCs effectively from MSCs of both DS/obese and DS/lean rats. These riPSCs may well serve as highly effective tools for the investigation of MetS pathophysiology in vitro.

Highlights

  • The laboratory rat (Rattus norvegicus) was the first mammalian species to be used for scientific research, and has been widely applied as an animal model for studies in physiology, pharmacology, toxicology, nutrition, behavior, immunology, and neoplasia [1]

  • Expression of pluripotency markers in rat induced pluripotent stem cells (iPSCs) To generate riPSCs, we initially infected mesenchymal stromal cells (MSCs) isolated from the adipose tissues of Dahl salt-sensitive (DS)/obese rats and DS/lean rats, respectively, with a lentiviral vector carrying three mouse reprogramming factors (Oct3/4, Sox2, and Klf4)

  • MSCs that were not transfected with the reprogramming factors could not generate any colonies expressing enhanced green fluorescent protein (EGFP), even though they were cultured under the same conditions for 10 days

Read more

Summary

Introduction

The laboratory rat (Rattus norvegicus) was the first mammalian species to be used for scientific research, and has been widely applied as an animal model for studies in physiology, pharmacology, toxicology, nutrition, behavior, immunology, and neoplasia [1]. In 2006, Yamanaka et al reported the generation of pluripotent stem cells from mouse somatic cells by transduction of four transcription factors (Oct3/4, Sox, Klf, and Myc) [2]. These cells are referred to as induced pluripotent stem cells (iPSCs). IPSCs can be extremely valuable research tools, especially for rats and other species for which embryonic stem cells (ESCs) are not available or are difficult to isolate. The generation of iPSCs from disease model rats could help to clarify the pathogenesis of various disorders

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call