Abstract

The formation of quantum vortices by two mutually perpendicular waves excited on the surface of superfluid helium has been observed. The interaction of negative charges injected under the surface of He-II with the vortex flow of the liquid, which is formed by surface waves at frequencies from 20 to 49.9 Hz, in the temperature range of 1.5–2.17 K has been studied experimentally by analyzing the current distribution detected by vertically oriented segments of a receiving collector. The efficient capture of injected charges by quantum vortices has been observed at a temperature ofT= 1.5 K, which leads to a significant redistribution of currents between segments of the receiving collector. Charges leave traps on quantum vortices at temperatures nearT= 1.7 K. With a further increase in the temperature, injected charges are scattered on vortex flows of the normal component, which are generated by surface waves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.