Abstract

Mouse embryonic stem (ES) cells are non-transformed cell lines derived directly from the pluripotent founder tissue in the mouse embryo, the epiblast [1-3]. Aggregation of ES cells triggers the generation of a diverse array of cell types, including neuronal cells [4-7]. This capacity for multilineage differentiation is retained during genetic manipulation and clonal expansion [8]. In principle, therefore, ES cells provide an attractive system for the molecular and genetic dissection of developmental pathways in vitro. They are also a potential source of cells for transplantation studies. These prospects have been frustrated, however, by the disorganised and heterogeneous nature of development in culture. We have therefore developed a strategy for genetic selection of lineage-restricted precursors from differentiating populations. Here, we report that application of such lineage selection enables efficient purification of neuroepithelial progenitor cells that subsequently differentiate efficiently into neuronal networks in the absence of other cell types.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.