Abstract

Transverse spin, a spin component with unique characteristics, provides a new dimension for plenty of applications, such as optical trapping, imaging, and communication. Here, we analyze the pure transverse spin in the Bessel beam, which is solely present in the azimuthal direction. Based on a single layer dielectric metasurface, we efficiently generate Bessel beams with pure transverse spin in a compact optical system. As designed, the transverse spin is flexibly tunable by converting the polarization of the incident light. Furthermore, in the scattered Bessel beam, the local electromagnetic field oscillates around the transverse axis, which is perpendicular to the beam propagation. At certain positions, the local polarization ellipse degenerates into a perfect circle, resulting in a ring-periodic distribution of circularly polarized points (C points) in the beam. This suggests that the local polarization demonstrates a nontrivial periodic structure. This work deepens our understanding of spin-related physics and opens a new avenue for the study and application of transverse spins in ultracompact, flat, multifunctional nanophotonic platforms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.