Abstract

We propose a nonoptical mechanism for generating spin current via Auger recombination in semiconductor quantum wells (QWs) with spin–orbit splitting associated with structural QW asymmetry. It is shown that Auger recombination in narrow-bandgap semiconductors makes it possible to produce spin currents that exceed those that are obtained in the case of intraband as well as interband optical excitation. Analysis shows that the interference term in the expression for the Auger-recombination rate is responsible for the generation of spin currents.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call