Abstract

We investigate electronic transport in a three-terminal hybrid system, composed by an interacting quantum dot tunnel coupled to one superconducting, one ferromagnetic, and one normal lead. Despite the tendency of the charging energy to suppress the superconducting proximity effect when the quantum dot is in equilibrium, the non-equilibrium proximity effect can give rise to a large Andreev current. The presence of the ferromagnet can lead to a finite spin accumulation on the dot. We find that the interplay of the Andreev current and spin accumulation can generate a pure spin current, with no associated charge transport, in the normal lead. This situation is realised by tuning the quantum-dot spectrum by means of a gate voltage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.