Abstract

OBJECTIVE To identify an optimal technique for isolation, purification, and amplification of Schwann cells (SCs) from biopsy specimens of the dorsal cutaneous branches of the cervical nerves of dogs. SAMPLE Biopsy specimens of dorsal cervical cutaneous nerves from the cadavers of three 1- to 2-year-old dogs. PROCEDURES Nerve specimens were dissected, predegenerated, and dissociated to isolate single cells. After culture to enhance SC growth, cells were immunopurified by use of magnetic beads. Cell purity was evaluated by assessing expression of cell surface antigens p75 (to detect SCs) and CD90 (to detect fibroblasts). Effects of various concentrations of recombinant human glial growth factor 2 (rhGGF2) on SC proliferation were tested. Cell doubling time was assessed in SC cultures with selected concentrations of rhGGF2. RESULTS Mean ± SD wet weight of nerve fascicles obtained from the biopsy specimens was 16.8 ± 2.8 mg. A mean predegeneration period of 8.6 days yielded approximately 6,000 cells/mg of nerve tissue, and primary culture yielded 43,000 cells/mg of nerve tissue in a mean of 11 days, of which 39.9 ± 9.1% expressed p75. Immunopurification with magnetic beads yielded a mean of 85.4 ± 1.9% p75-positive cells. Two passages of subculture with 10μM cytosine arabinoside further enhanced SC purity to a mean of 97.8 ± 1.2% p75-positive cells. Finally, rhGGF2 supplementation at a range of 40 to 100 ng/mL increased the SC proliferation rate up to 3-fold. CONCLUSIONS AND CLINICAL RELEVANCE SCs could be cultured from biopsy specimens of dorsal cervical cutaneous nerves and purified and expanded to generate adequate numbers for autologous transplants to treat dogs with spinal cord and peripheral nerve injuries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call