Abstract

Therapies based on enhancing the numbers and/or function of T regulatory cells (Tregs) represent one of the most promising approaches to restoring tolerance in many immune-mediated diseases. Several groups have investigated whether human Tregs suitable for cellular therapy can be obtained by in vitro expansion, in vitro conversion of conventional T cells into Tregs, or gene transfer of the FOXP3 transcription factor. To date, however, none of these approaches has resulted in a homogeneous and stable population of cells that is as potently suppressive as ex vivo Tregs. We developed a lentivirus-based strategy to ectopically express high levels of FOXP3 that do not fluctuate with the state of T-cell activation. This method consistently results in the development of suppressive cells that are as potent as Tregs and can be propagated as a homogeneous population. Moreover, using this system, both naïve and memory CD4(+) T cells can be efficiently converted into Tregs. To date, this is the most efficient and reliable protocol for generating large numbers of suppressive CD4(+) Tregs, which can be used for further biological study and developed for antigen-specific cellular therapy applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.