Abstract

Fuzzy logic is becoming one of the most-influential fields of modern mathematics with applications that impact not only other sciences, but society in general. This newly found interest in fuzzy logic is in part due to the crucial role it plays in the development of artificial intelligence. As a result, new tools and practices for the development of the above-mentioned field are in high demand. This is one of the issues this paper was composed to address. To be more specific, a sizable part of fuzzy logic is the study of fuzzy connectives. However, the current method used to generalize them is restricted to the use of basic automorphisms, which hinders the creation of new fuzzy connectives. For this reason, in this paper, a new method of generalization is conceived of that aims to generalize the fuzzy connectives using polynomial automorphism functions instead. The creation of these automorphisms is achieved through numerical analysis, an endeavor that is supported with programming applications that, using mathematical modeling, validate and visualize the research. Furthermore, the automorphisms satisfy all the necessary criteria that have been established for use in the generalization process and, consequently, are used to successfully generalize fuzzy connectives. The result of the new generalization method is the creation of new usable and flexible fuzzy connectives, which is very promising for the future development of the field.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.