Abstract

Perfect optical vortex (POV) beams have attracted extensive attention because they have the advantage of a radial profile that is independent of orbital angular momentum. To date, it is usually obtained by means of the Fourier transform performed by a lens on Bessel beams. We theoretically and experimentally demonstrate that POV can be generated by performing the Fourier transform on Laguerre-Gauss beams with a high-order radial index. Furthermore, we derive an analytical expression for the increase in vortex radius, which is beneficial to compensate for the influence of the radius change in actual experiments. Our results may shed new light for a variety of research utilizing POV.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.