Abstract

Recently, we established the GEEP ("gene editing by electroporation of Cas9 protein") method, in which the CRISPR/Cas9 system, consisting of a Cas9 protein and single guide RNA (sgRNA), is introduced into pig zygotes by electroporation and thus induces highly efficient targeted gene disruption. In this study, we examined the effects of sgRNA on the blastocyst formation of porcine embryos and evaluated their genome-editing efficiency. To produce an animal model for diabetes, we targeted PDX-1 (pancreas duodenum homeobox 1), a gene that is crucial for pancreas development during the fetal period and whose monoallelic disruption impairs insulin secretion. First, Cas9 protein with different sgRNAs that targeted distinct sites in the PDX-1 exon 1 was introduced into in vitro-fertilized zygotes by the GEEP method. Of the six sgRNAs tested, three sgRNAs (sgRNA1, 2, and 3) successfully modified PDX-1 gene. The blastocyst formation rate of zygotes edited with sgRNA3 was significantly (p<0.05) lower than that of control zygotes without the electroporation treatment. Our study indicates that the GEEP method can be successfully used to generate PDX-1 mutant blastocysts, but the development and the efficiency of editing the genome of zygotes may be affected by the sgRNA used for CRISPR/Cas9 system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.