Abstract

The generation of optical phase-conjugate waves and the application of optical phase conjugation (OPC) to optical communication systems is described. The method of pulse shape distortion compensation by OPC is outlined including distortion due to both fiber dispersion and the optical Kerr effect. The generation of a forward-going phase-conjugate wave in a third-order nonlinear medium is discussed and that by a nondegenerate forward four-wave mixing in a zero-dispersion single-mode fiber (SMF) is investigated. Suppressing the stimulated Brillouin scattering (SBS) of a pump wave in the fiber prevents saturation of the generation efficiency of the phase-conjugate wave even when the pump power exceeds the SBS threshold. In transmission experiments through a 200-km standard SMF with a 16-Gb/s intensity-modulated signal and a 5-Gb/s continuous-phase FSK (CPFSK) modulated signal, it is shown the applicability of OPC is modulation independent and that OPC effectively compensates for both chromatic dispersion and the optical Kerr effect.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call