Abstract

Non-Gaussian stochastic processes are generated using nonlinear filters in terms of Itô differential equations. In generating the stochastic processes, two most important characteristics, the spectral density and the probability density, are taken into consideration. The drift coefficients in the Itô differential equations can be adjusted to match the spectral density, while the diffusion coefficients are chosen according to the probability density. The method is capable to generate a stochastic process with a spectral density of one peak or multiple peaks. The locations of the peaks and the band widths can be tuned by adjusting model parameters. For a low-pass process with the spectrum peak at zero frequency, the nonlinear filter can match any probability distribution, defined either in an infinite interval, a semi-infinite interval, or a finite interval. For a process with a spectrum peak at a non-zero frequency or with multiple peaks, the nonlinear filter model also offers a variety of profiles for probability distributions. The non-Gaussian stochastic processes generated by the nonlinear filters can be used for analysis, as well as Monte Carlo simulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.