Abstract

Strong correlations in the fluctuations of the intensity of emission from a semiconductor microcavity under resonant laser excitation are observed. The intensity correlation function exhibits an unusual oscillatory behavior with an unexpectedly long oscillation period and decay time. The visibility of the correlation function reaches 0.81. Long oscillation times are attributed to the Rabi frequency characterizing weak coupling between the electromagnetic field of the semiconductor microcavity mode and long-lived exciton states localized by the random potential of the quantum well. For a laser excitation power density of 400 W/cm2, the power density of the radiation emitted by the microcavity is 12 W/cm2, which corresponds to the total flux of nonclassical light of 1.5 × 1015 photons/s from an excited spot 50 μm in diameter. Thus, a microcavity can serve as a bright emitter of nonclassical light.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call