Abstract

The emission statistics of single semiconductor quantum dots is investigated in view of generating quantum states of light. Correlation experiments show that the emission of a quantum dot can be regulated so as to produce only one photon at a time as well as correlated photon pairs. This observation opens the way to the use of semiconductor quantum dots as triggered sources of single photons, which could find applications in quantum cryptography. We then discuss the potentiality of quantum dots for the production of mutually coherent single photons as well as entangled photons that could be used in quantum information processing schemes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call